MOLECULAR AND CRYSTAL STRUCTURE OF 5-AMINO-3-(N-*p*-METHYLBENZOYL-N-*p*-TOLUENESULFONYL)AMINO-1-PHENYL-1,2,4-TRIAZOLE

V. M. Chernyshev¹, V. A. Rakitov¹, V. A. Taranushich¹, and Z. A. Starikova²

It has been established by X-ray structural analysis that the initial product of the interaction of 5-amino-1-phenyl-3-p-toluenesulfonylamino-1,2,4-triazole with p-methylbenzoyl chloride is 5-amino-3-(N-pmethylbenzoyl-N-p-toluenesulfonyl)amino-1-phenyl-1,2,4-triazole.

Keywords: amino- and 3,5-diamino-1,2,4-triazole, 5-amino-3-(N-*p*-methylbenzoyl-N-*p*-toluenesulfonyl)- amino-1-phenyl-1,2,4-triazole, 1,2,4-triazole, acylation, X-ray structural analysis.

3,5-Diamino-1-R-1,2,4-triazoles enter into the composition of medicinal preparations [1] and are used for obtaining substances possessing a wide spectrum of biological activity [2, 3]. On acylating 5-amino-1-phenyl-3-*p*-toluenesulfonylamino-1,2,4-triazole (1) with *p*-methylbenzoyl chloride in acetonitrile in the presence of pyridine a compound is obtained which, on the basis of data of elemental analysis, IR and NMR spectroscopy, was assigned the structure of 5-amino-3-(N-*p*-methylbenzoyl-N-*p*-toluenesulfonyl)amino-1-phenyl-1,2,4-triazole (2) [4]. However the spectral data presented in [4] were not able completely to exclude the possibility of isomeric structures of this compound, such as structures **3** and **4**.

¹South-Russian State Technical University, Novocherkassk 346428; e-mail: tnw@novoch.ru. ²A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 117813; e-mail: star@xray.ineos.ac.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 917-921, June, 2007. Original article submitted February 26, 2006.

0009-3122/07/4306-776©2007 Springer Science+Business Media, Inc.

776

Since the structure of the obtained compound enables the special features of the acylation reactions of 3-acylamino-5-amino- and 5-amino-3-sulfonylamino-1-R-1,2,4-triazoles to be understood [4], we have carried out an X-ray structural analysis of it.

Fig. 1. Structure of the compound 2 molecule.

Fig. 2. System of intermolecular hydrogen bonds in the crystal of compound 2.

According to the data of X-ray structural analysis (Figs. 1, 2, Tables 1, 2) the compound **2** molecule has a non-planar structure. The phenyl group makes a dihedral angle of 29.4° with the plane of the triazole ring, and the benzene rings of the *p*-methylbenzoyl and *p*-toluenesulfonyl groups are inclined to the triazole ring at 50.1 and 28.6° respectively.

The bond lengths in the triazole ring are in agreement with the corresponding values of substituted triazoles studied previously [3, 5-11]. The $N_{(4)}$ and $N_{(5)}$ atoms have a trigonal pyramidal configuration (sum of valence angles 336.2 and 350.5° respectively). The deviation of the $N_{(4)}$ atom from the plane of the triazole ring is 0.014(3) Å, while the $N_{(5)}$ atom deviates by 0.091(3) Å, probably as a result of the reduced intramolecular contact $C_{(2)}$ ··· $C_{(9)}$ of 3.05 Å and the shortened contacts at $N_{(1)}$ ··· $C_{(9)}$ of 3.18 and $N_{(3)}$ ··· $C_{(4)}$ 3.19 Å.

The C₍₁₎–N₍₄₎ bond length (1.360(2) Å) is in agreement with corresponding values in other 5-amino-1,2,4-triazoles (1.347-1.371 Å [5-7]). The C₍₂₎–N₍₅₎ bond (1.423(2) Å) is lengthened in comparison with 3-amino-1,2,4-triazoles, in which it is 1.370-1.376 Å [3, 9-11], and is closest to the analogous bond in 1-(1-methyl-5-morpholino-1,2,4-triazol-3-yl)-3-phenyl-2-thioxoimidazolidine-4,5-dione (1.429 Å) [8], in which the 3-amino group of the 1,2,4-triazole is included in an imidazolidine ring.

The system of atoms formed by the carbonyl group, the $N_{(5)}$ atom, and the sulfonyl group $(O_{(3)}-C_{(3)}-N_{(5)}-S_{(1)}-O_{(1)}-O_{(2)})$ is close in geometric parameters to the corresponding segment in N-tolyl-N-tosyl*p*-chlorobenzamide [12]. The bond length of $C_{(3)}-N_{(5)}$ is 1.429(2), $S_{(1)}-N_{(5)}$ 1.706(1) Å (1.418 and 1.704 Å respectively [12]), the angles $O_{(3)}C_{(3)}N_{(5)}$ 121.2(2), $C_{(3)}N_{(5)}S_{(1)}$ 119.1(1), $O_{(1)}S_{(1)}N_{(5)}$ 106.16(7), $O_{(1)}S_{(1)}O_{(2)}$ 120.77(8)° (121.3, 118.4, 107.1, 119.5° [12]), the carbonyl group is almost coplanar with the $S_{(1)}-O_{(2)}$ bond, the

Bond	<i>d</i> , Å	Bond	d, Å
N., C.,	1 301(2)	N ₂ , C ₂	1 429(2)
$N_{(1)} - N_{(2)}$	1.388(2)	$O_{(3)} - C_{(3)}$	1.208(2)
$N_{(2)}-C_{(1)}$	1.366(2)	S ₍₁₎ -N ₍₅₎	1.706(1)
$N_{(3)}-C_{(1)}$	1.328(2)	$S_{(1)} - O_{(1)}$	1.426(1)
$N_{(3)}-C_{(2)}$	1.357(2)	S ₍₁₎ -O ₍₂₎	1.428(1)
$N_{(4)}-C_{(1)}$	1.360(2)	$S_{(1)}-C_{(11)}$	1.757(2)
N(5)-C(2)	1.423(2)	C(3)-C(4)	1.490(2)
N ₍₂₎ -C ₍₁₈₎	1.424(2)		

TABLE 1. Some Bond Lengths (d) in Compound 2

TABLE 2. Some Valence Angles (ω) in Compound 2.

Angle	ω,deg	Angle	ω, deg
$C_{(2)}N_{(1)}N_{(2)}$	101.1(1)	H _(1N4) N ₍₄₎ H _(2N4)	115.6
$C_{(1)}N_{(2)}N_{(1)}$	109.3(1)	$C_{(2)}N_{(5)}C_{(3)}$	115.7(1)
$C_{(1)}N_{(3)}C_{(2)}$	102.2(1)	C(2)N(5)S(1)	115.7(1)
$N_{(1)}C_{(2)}N_{(3)}$	117.7(1)	$C_{(3)}N_{(5)}S_{(1)}$	119.1(1)
N ₍₃₎ C ₍₁₎ N ₍₂₎	109.8(1)	O(3)C(3)N(5)	121.2(2)
$C_{(1)}N_{(2)}C_{(18)}$	130.4(1)	O(3)C(3)C(4)	123.9(2)
$N_{(1)}N_{(2)}C_{(18)}$	119.9(1)	N(5)C(3)C(4)	115.0(1)
$N_{(1)}C_{(2)}N_{(5)}$	122.9(1)	$O_{(1)}S_{(1)}O_{(2)}$	120.77(8)
$N_{(3)}C_{(2)}N_{(5)}$	119.3(1)	O(1)S(1)N(5)	106.16(7)
$N_{(3)}C_{(1)}N_{(4)}$	124.0(2)	O(2)S(1)N(5)	103.92(7)
$N_{(4)}C_{(1)}N_{(2)}$	126.2(1)	$O_{(1)}S_{(1)}C_{(11)}$	109.73(8)
C(1)N(4)H(1N4)	108.9	$O_{(2)}S_{(1)}C_{(11)}$	108.09(8)
C(1)N(4)H(2N4)	111.6	$N_{(5)}S_{(1)}C_{(11)}$	107.30(7)

fragment $O_{(3)}C_{(3)}N_{(5)}S_{(1)}O_{(2)}$ is planar within the limits ± 0.02 Å, and the pseudotorsion angle $O_{(3)}C_{(3)}S_{(1)}O_{(2)}$ is 174.9° (178.4° [12]). It should be noted that in compound **2** the $N_{(5)}$ - $S_{(1)}$ bond length is greater than the length characteristic of N-acyl-N-tosylamino fragments (1.60-1.64 Å) [13]. The same S–N bond length is found only in two more molecules containing the fragment under consideration [14, 15].

In the crystal, molecules are combined in centrosymmetric H-dimers (Fig. 2) as a result of a hydrogen bond $N_{(3)}$ ···H_(1NA)-N_(4A) [parameters of the hydrogen bond are length $N_{(3)}$ ···N_(4A) 3.016(2), $N_{(3)}$ ···H_(1NA) 2.14 Å, angle $N_{(3)}$ ···H_(1NA)-N_(4A) 171°). In addition, in the dimer a second interaction was observed of the unshared pair of the $N_{(4)}$ atom and the π -system of the ring $C_{(11A)}$ -C_(16A) and correspondingly of the $N_{(4A)}$ atom and the π -system of the ring $C_{(11)}$ -C₍₁₆₎. The distance $N_{(4)}$ ···centroid ($C_{(11A)}$ -C_(16A)) is equal to 3.284 Å.

The X-ray structural analysis data therefore confirmed the proposed direction of the acylation reaction of 3-acylamino-5-amino- and 5-amino-3-sulfonylamino-1-R-1,2,4-triazoles [4]. Acylation of the substituted 3-amino group initially is confirmed by the formation of 5-amino-3-(N,N-diacyl)amino- or 5-amino-3-(N-acyl-N-sulfonyl)amino-1-R-1,2,4-triazoles, which are then rearranged to the thermodynamically more stable 3,5-diacylamino- or 5-acylamino-3-sulfonylamino-1-R-1,2,4-triazoles.

EXPERIMENTAL

X-ray Structural Investigation. Colorless prismatic crystals of compound **2**, obtained from a DMF–EtOH, 1 : 1 mixture, were monoclinic, $C_{23}H_{21}N_5O_3S$. At 120 K a = 8.1186(6), b = 18.204(1), c = 14.666(1) Å, $\beta = 94.203(2)^\circ$, V = 2161.7(3) Å³, $M_r = 447.51$, Z = 4, space group $P2_1/c$, $d_{calc} = 1.375$ g/cm³. The experimental collection of 13461 reflections was obtained on a Bruker SMART CCD area detector diffractometer at 120 K (λ MoK α radiation, $2\theta_{max} = 54.00^\circ$) with a monocrystal of size $0.50 \times 0.40 \times 0.35$ mm. After averaging equivalent reflections 5814 independent reflections were obtained ($R_{int} = 0.0448$), which were used to decipher and refine the structure. Absorption ($\mu = 0.186$ mm⁻¹) was not taken into consideration.

The structure was solved by the direct method, all the non-hydrogen atoms were localized in electron density difference syntheses and refined on F_{hkl}^2 in an anisotropic approach. The hydrogen atoms of the NH₂ group were localized in electron density difference syntheses and refined by the riding model isotropic approach; H(C) hydrogen atoms were placed in geometrically calculated positions and moved on refining in the rider model with U(H) = nU(C), where n = 1.2 and 1.5 for CH and CH₃ groups respectively, U(C) is the equivalent temperature factor of the carbon atom to which the corresponding H atom is linked.

Final values of the uncertainty factors: $R_1 = 0.0436$ (calculated on F_{hkl} for 3766 reflections with $I > 2\sigma(I)$), $wR_2 = 0.1016$ (calculated on F_{hkl}^2 for all 4534 reflections), GOOF = 1.004, 289 refined parameters.

All calculations were carried out with the SHELXTL PLUS 5 set of programs [16].

REFERENCES

- 1. V. G. Granik and N. B. Grigor'ev, *Nitric Oxide (NO). New Route in the Search for Drugs* [in Russian], Vuzovskaya Kniga, Moscow (2004), p. 139.
- 2. G. Berecz, J. Reiter, G. Argay, and A. Kálmán, J. Heterocycl. Chem., 39, 319 (2002).
- 3. A. R. Dunstan, H.-P. Weber, G. Rihs, H. Widmer, and E. K. Dziadulewicz, *Tetrahedron Lett.*, **39**, 7983 (1998).
- 4. V. M. Chernyshev, V. A. Rakitov, V. A. Taranushich, and V. V. Blinov, *Khim. Geterotsikl. Soedin.*, 1342 (2005). [*Chem. Heterocycl. Comp.*, **40**, 1139 (2005)].
- 5. I. Wawrzycka-Gorczyca, B. Rzeszotarska, A. Dzygiel, E. Masiukiewicz, and A. E. Koziol, *Z. Kristallogr.*, **218**, 480 (2003).

- 6. V. V. Lipson, S. M. Desenko, V. D. Orlov, O. V. Shishkin, M. G. Shirobokova, V. N. Chernenko, and L. I. Zinov'eva, *Khim. Geterotsikl. Soedin.*, 1542 (2000). [*Chem. Heterocycl. Comp.*, **35**, 1329 (2000)].
- 7. B. Ribar, S. Stankovic, G. Argay, A. Kálmán, and F. Koczo, Acta Crystallogr. C43, 1712 (1987).
- 8. W. Ried, G. W. Broft, and J. W. Bats, Chem. Ber., 116, 1547 (1983).
- 9. G. L. Starova, O. V. Frank-Kamenetskaya, V. V. Makarskii, and V. A. Lopyrev, *Kristallografiya*, 25, 1292 (1980).
- 10. A. Kalman and G. Argay, J. Mol. Struct., **102**, 391 (1983).
- 11. A. Kalman, L. Parkanyi, and J. Reiter, J. Mol. Struct., 118, 293 (1984).
- 12. V. Padmavathi, K. V. Reddy, A. Padmaja, and P. Venugopalan, J. Org. Chem., 68, 1567 (2003).
- 13. H.-B. Burgi and J. D. Dunitz (editors), *Structure Correlation*, Vol. 2, VCH, Weinheim (1994), p. 767.
- 14. D. Enders, C. F. Janeck, and G. Raabe, Eur. J. Org. Chem., 3337 (2000).
- 15. S. Iwamatsu, K. Matsubara, and H. Nagashima, J. Org. Chem., 64, 9625 (1999).
- 16. G. M. Sheldrick, *SHELXTL v. 5.10, Structure Determination Software Suite*, Bruker AXS, Madison, Wisconsin, USA (1998).